2021.07-至今;
安徽大学,计算智能与信号处理教育部重点实验室,人才引进;
2017.09-2021.07;
华东理工大学:控制科学与工程;
2019.09-2020.10;
McMaster University, Canada (国外导师: Vladimir Mahclec).
研究领域:
深度神经网络优化及其应用,图像分割,
生物信息学,数据挖掘.
化工过程先进控制与优化教育部重点实验室(钱锋院士团队);
导师: 钟伟民 (国家杰出青年、优秀青年获得者).
Familiar with Web Development (HTML
and CSS), Git, and Linux Systems ...
Strong foundation in statistics, math, computer science, and manufacturing engineering.
CCF生物信息学(BIO-3New)青年学者讨论会执委会委员.
审稿人: TCYB, TNNLS, TII, TIM, BIB.
IEEE Member, CAA会员, CCF会员, 化工学会会员.
主讲《高级人工智能》、《Python程序设计基础》、《深度学习》;
Familiar with Python and its libraries (Scikit-Learn, Tensorflow, Keras, Pytorch, and Pandas).
I like listening to music
and playing basketball.
2017--至今
2019.09-2020.10 Mcmaster University, Canada, 中国留学基金委, 201906740038.
2021.07-2024.06 基于多源数据融合的抗包虫病药物组合预测研究, 国家重点研发计划, 2021YFE0102100, 172万, 在研, 参与.
2019.01-2023.01 污水处理过程智能优化运行基础理论及关键技术, NSFC重大研发课题, 61890333, 400万, 在研, 参与.
2023.01-2026.12 基于多标签学习的多肽药物预测方法研究, 面上, 62272004, 54万元, 在研, 参与.
2018.01-2020.12 催化重整过程全流程动态建模、控制与优化集成研究, 青年基金, 61803158, 25万, 结题, 参与.
2021.06-2024.06 安徽大学引进人才科研启动经费, S020318006, 15万, 在研, 主持.
2023.01-2024.12 基于深度模型的高精度圆形目标识别研究, 能源化工过程智能制造教育部重点实验室, 开放课题, 2023SMECP02, 4万, 在研, 主持.
1. D. Tan, Y. Su, X. Peng, X. Zhang, C-H. Zheng, and W. Zhong*. Large-Scale Data-Driven Optimization in Deep Modeling with An Intelligent Decision-Making Mechanism, IEEE Transactions on Cybernetics, 2023, DOI: 10.1109/TCYB.2023.3278110. (一区Top)
2. D. Tan, Z. Huang, X. Peng, W. Zhong*, and V. Mahalec*. Deep adaptive fuzzy clustering for evolutionary unsupervised representation learning, IEEE Transactions on Neural Networks and Learning Systems, 2023, DOI: 10.1109/TNNLS.2023.3243666. (一区Top)
3. D. Tan, L. Chen, C. Jiang, W. Zhong*, W. Du, F. Qian, and V. Mahalec. A circular targets feature detection framework based on DCNN for industrial applications, IEEE Transactions on Industrial Informatics, 17(5): 3303-3313, 2021. (一区Top)
4. D. Tan, W. Zhong*, X. Peng, Q. Wang, and V. Mahalec. Accurate and fast deep evolutionary networks structured representation through activating and freezing dense networks, IEEE Transactions on Cognitive and Developmental Systems, 14(1): 102-115, 2022. (二区)
5. Y. Su, R. Lin, J. Wang, D. Tan*, and C-H. Zheng. Denoising adaptive deep clustering with self-attention mechanism on single-cell sequencing data, Briefings in Bioinformatics, 2023, DOI: 10.1093/bib/bbad021. (生物信息Top期刊)
6. D. Tan, W. Zhong*, X. Peng, Q. Wang, and V. Mahalec. Automatic determining optimal parameters in multi-kernel collaborative fuzzy clustering based on dimension constraint, Neurocomputing, 443: 58-74, 2021. (二区Top)
7. D. Tan, W. Zhong*, C. Jiang, X. Peng, and W. He. High-order fuzzy clustering algorithms based on multikernel mean shift, Neurocomputing, vol. 385, pp. 63-79, 2020. (二区Top)
8. D. Tan, Y. Yang, M. Wang, P. Wang, L. Zhang, T-O. Ishdorj, and Y. Su*. Extraction of relationship between esophageal cancer and biomolecules based on BioBERT, Proc. 2023 International Conference on Intelligent Computing (ICIC), 2023, Accepted. (CCF C类)
9. W. Zhong*, D. Tan, X. Peng, Y. Tang, and W. He. Fuzzy high-order hybrid clustering algorithm based on swarm intelligence sets, Neurocomputing, 314, 347-359, 2018. (二区Top, 导师一作学生二作)
10. J. Wang, J. Xia, D. Tan, R. Lin, Y. Su, and C-H. Zheng*. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation, Briefings in Bioinformatics, 23(2): 1-13, 2022. (生物信息Top期刊)
11. C. Jiang, W. Zhong*, Y. Lu, B. Huang*, W. Song, D. Tan, and F. Qian. Deep Bayesian Slow Feature Extraction with Application to Industrial Inferential Modeling, IEEE Transactions on Industrial Informatics, 19(1): 40-51, 2023. (一区Top)
12. Z. Zhang, Y. Zhang, D. Yue*, C-X. Dou, L. Ding, and D. Tan. Voltage regulation with high penetration of low-carbon energy in distribution networks: a source-grid-load-collaboration-based perspective, IEEE Transactions on Industrial Informatics, 18(6), 3987-3999, 2022. (一区Top)
13. P. Wei, Z. Pang, L. Jiang, D. Tan, Y. Su, and C-H. Zheng*. Promoter prediction in nannochloropsis based on densely connected convolutional neural networks, Methods, 204: 38-46, 2022.
14. Q. Wang, L. Zino, D. Tan, J. Xu, and W. Zhong*. Fully distributed quantized secure bipartite consensus control of nonlinear multiagent systems subject to denial-of-service attacks, Neurocomputing, , 505: 101-115, 2022. (二区Top)
15. Q. Wang, W. He, D. Tan, W. Zhong*. Event-triggered control for leader-following bipartite bounded consensus of multiagent systems under quantized information, Proc. IECON 2021: Annual Conference of the IEEE Industrial Electronics Society, 2021.
16. Q. Wang, W. He*, L. Zino, D. Tan, and W. Zhong*. Bipartite consensus for a class of nonlinear multi-agent systems under switching topologies: a disturbance observer-based approach, Neurocomputing, 488: 3130-3143, 2022. (二区Top)
17. Q. Wang, W. Zhong*, J. Xu, W. He, and D. Tan. Bipartite tracking consensus control of nonlinear high-order Multi-agent systems subject to exogenous disturbances, IEEE Access, 145910-145920, 2019.
18. R. Cao, Q. Gu, D. Tan, P. Wei, and C-H. Zheng*. Prediction of microsatellite instability of colorectal cancer using multi-scale pathological images based on deep learning, Proc. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2022, DOI:10.1109/BIBM55620.2022.9995576. (CCF B类)
19. Q. Wang, W. He, D. Tan, W. Zhong*. Consensus disturbance rejection of nonlinear multi-agent systems over cooperation-competition networks, Proc. China Automation Congress (CAC2021), 2021.
1. 谭大禹; 姚致远; 戴益科; 周晓平; 花林枫; 丁睿; 苏延森; 郑春厚 ; 一种基于深度学习的股骨滑车宽度测量方法, 2022-06-30, 中国, CN202210769176.8
2. 苏延森; 赵永敏; 谭大禹; 一种基于抗寄生虫感染的关键基因的化合物组合筛选方法, 2021-10-28, 中国, CN202111265124.9
3. 苏延森; 杨洋; 谭大禹; 一种基于深度学习的生物医学实体识别和关系预测的方法, 2021-11-04, 中国, CN202111298745.7
Still on this mysterious ride called journey of life, I'll keep exploring and stay curious.